8 research outputs found

    Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals

    Full text link
    Tesis por compendioDespite the continuous evolution in computers and information technology, real-world combinatorial optimization problems are NP-problems, in particular in the domain of planning and scheduling. Thus, although exact techniques from the Operations Research (OR) field, such as Linear Programming, could be applied to solve optimization problems, they are difficult to apply in real-world scenarios since they usually require too much computational time, i.e: an optimized solution is required at an affordable computational time. Furthermore, decision makers often face different and typically opposing goals, then resulting multi-objective optimization problems. Therefore, approximate techniques from the Artificial Intelligence (AI) field are commonly used to solve the real world problems. The AI techniques provide richer and more flexible representations of real-world (Gomes 2000), and they are widely used to solve these type of problems. AI heuristic techniques do not guarantee the optimal solution, but they provide near-optimal solutions in a reasonable time. These techniques are divided into two broad classes of algorithms: constructive and local search methods (Aarts and Lenstra 2003). They can guide their search processes by means of heuristics or metaheuristics depending on how they escape from local optima (Blum and Roli 2003). Regarding multi-objective optimization problems, the use of AI techniques becomes paramount due to their complexity (Coello Coello 2006). Nowadays, the point of view for planning and scheduling tasks has changed. Due to the fact that real world is uncertain, imprecise and non-deterministic, there might be unknown information, breakdowns, incidences or changes, which become the initial plans or schedules invalid. Thus, there is a new trend to cope these aspects in the optimization techniques, and to seek robust solutions (schedules) (Lambrechts, Demeulemeester, and Herroelen 2008). In this way, these optimization problems become harder since a new objective function (robustness measure) must be taken into account during the solution search. Therefore, the robustness concept is being studied and a general robustness measure has been developed for any scheduling problem (such as Job Shop Problem, Open Shop Problem, Railway Scheduling or Vehicle Routing Problem). To this end, in this thesis, some techniques have been developed to improve the search of optimized and robust solutions in planning and scheduling problems. These techniques offer assistance to decision makers to help in planning and scheduling tasks, determine the consequences of changes, provide support in the resolution of incidents, provide alternative plans, etc. As a case study to evaluate the behaviour of the techniques developed, this thesis focuses on problems related to container terminals. Container terminals generally serve as a transshipment zone between ships and land vehicles (trains or trucks). In (Henesey 2006a), it is shown how this transshipment market has grown rapidly. Container terminals are open systems with three distinguishable areas: the berth area, the storage yard, and the terminal receipt and delivery gate area. Each one presents different planning and scheduling problems to be optimized (Stahlbock and Voß 2008). For example, berth allocation, quay crane assignment, stowage planning, and quay crane scheduling must be managed in the berthing area; the container stacking problem, yard crane scheduling, and horizontal transport operations must be carried out in the yard area; and the hinterland operations must be solved in the landside area. Furthermore, dynamism is also present in container terminals. The tasks of the container terminals take place in an environment susceptible of breakdowns or incidences. For instance, a Quay Crane engine stopped working and needs to be revised, delaying this task one or two hours. Thereby, the robustness concept can be included in the scheduling techniques to take into consideration some incidences and return a set of robust schedules. In this thesis, we have developed a new domain-dependent planner to obtain more effi- cient solutions in the generic problem of reshuffles of containers. Planning heuristics and optimization criteria developed have been evaluated on realistic problems and they are applicable to the general problem of reshuffling in blocks world scenarios. Additionally, we have developed a scheduling model, using constructive metaheuristic techniques on a complex problem that combines sequences of scenarios with different types of resources (Berth Allocation, Quay Crane Assignment, and Container Stacking problems). These problems are usually solved separately and their integration allows more optimized solutions. Moreover, in order to address the impact and changes that arise in dynamic real-world environments, a robustness model has been developed for scheduling tasks. This model has been applied to metaheuristic schemes, which are based on genetic algorithms. The extension of such schemes, incorporating the robustness model developed, allows us to evaluate and obtain more robust solutions. This approach, combined with the classical optimality criterion in scheduling problems, allows us to obtain, in an efficient in way, optimized solution able to withstand a greater degree of incidents that occur in dynamic scenarios. Thus, a proactive approach is applied to the problem that arises with the presence of incidences and changes that occur in typical scheduling problems of a dynamic real world.Rodríguez Molins, M. (2015). Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48545TESISCompendi

    Un modelo de optimización difusa para el problema de atraque de barcos

    Full text link
    [EN] The Berth Allocation Problem (BAP) in a maritime terminal of containers is defined as the feasible berth allocation of incoming vessels. In this work a model of fuzzy optimization for the BAP continuous and dynamical is developed. It is assumed that the time of arrival of the vessels is imprecise, in the sense that the vessels arrive early or late until a permissible tolerance. To represent the imprecision in the arrival of the vessels fuzzy set are used. For the solution of the model the ¿- cut method is applied. The proposed model has been coded in CPLEX and it has been evaluated for diferent instances. The obtained results show that the proposed model is useful to the managers of a maritime terminal of containers since they have at hand some berth plans with different degrees of earliness and delay allowed, optimized with regard to the waiting time and with the feature that, while greater the possibility of earliness or delay of a vessel is, a berth time is assigned to it supporting that possibility.[ES] El problema de asignación de atraques (BAP) en un terminal marítimo de contenedores se define como la asignación factible de atraques a los barcos entrantes. En este trabajo, se desarrolla un modelo de optimización difusa para el BAP continuo y dinámico. Se asume que el tiempo de llegada de los barcos es impreciso, en el sentido que los barcos pueden adelantarse o retrasarse hasta una tolerancia permitida. Se utilizan conjuntos difusos para representar la imprecisión en la llegada de los barcos. Para la solución del modelo se aplica el método de ¿- corte. El modelo propuesto ha sido codificado en CPLEX y evaluado en diferentes instancias. Los resultados obtenidos muestran que el modelo propuesto puede ayudar a los administradores de un terminal marítimo de contenedores, pues tiene a su disposición planes de atraque con diferentes grados de adelanto y retraso permitido, optimizados respecto al tiempo de espera. Con la característica que, a más posibilidad de adelantarse y retrasarse de un barco, se le otorga un tiempo de atraque que soporta esa posibilidad.Este trabajo ha sido financiado por INNOVATE-PERU, Proyecto N° PIBA-2-P-069-14.Gutiérrez, F.; Vergara, E.; Rodríguez Molins, M.; Barber, F. (2017). Un modelo de optimización difusa para el problema de atraque de barcos. Investigación Operacional. 38(2):160-169. http://hdl.handle.net/10251/148238S16016938

    Evaluación y aplicación de mejoras en red virtual de sistema distribuido en producción

    Get PDF
    La arquitectura de microservicios ofrece una serie de mejoras en los procesos de desarrollo de aplicaciones complejas, permite aislar mucho más los diferentes componentes y limitar sus diferentes responsabilidades. Pero su gestión plantea nuevos desafíos. La popularización de esta arquitectura ha ido de la mano de nuevos desarrollos de código abierto que facilitan su implantación, como Kubernetes, un sistema distribuido para la automatización, escalado y gestión de aplicaciones. Los despliegues de estas soluciones, por su naturaleza distribuida y dinámica añaden nuevos niveles de complejidad. En este proyecto se abordan una serie de problemas encontrados en la red de un cluster de Kubernetes con carga real de producción y se desarrollan y evalúan soluciones y mejoras para mitigarlos. Para ello se estudia a fondo el sistema, poniendo especial hincapié en los componentes más cercanos a la red, buscando cuellos de botella que puedan afectar a la escalabilidad y estabilidad del sistema. La búsqueda y aplicación de mejoras se centra principalmente en dos partes. En los balanceadores los mayores desafíos residen en que soportan todo el tráfico externo del sistema y en que necesitan reconfigurarse frecuentemente respondiendo a los cambios en el clúster. Se introducen mejoras para minimizar los problemas causados por las recargas y optimizaciones para poder manejar una mayor cantidad de tráfico. En la red que interconecta los servicios se analiza el impacto del uso de encapsulación VXLAN y se desarrolla una solución para dejar de usarla sin necesidad de parar la plataforma. En varios puntos del proyecto se realizan pruebas de carga de modo que se pueda evaluar de forma objetiva la aportación de cada una de las mejoras propuestas

    Robust scheduling for Berth Allocation and Quay Crane Assignment Problem

    Full text link
    [EN] Decision makers must face the dynamism and uncertainty of real-world environments when they need to solve the scheduling problems. Different incidences or breakdowns, for example, initial data could change or some resources could become unavailable, may eventually cause the infeasibility of the obtained schedule. To overcome this issue, a robust model and a proactive approach are presented for scheduling problems without any previous knowledge about incidences. This paper is based on proportionally distributing operational buffers among the tasks. In this paper, we consider the berth allocation problem and the quay crane assignment problem as a representative example of scheduling problems. The dynamism and uncertainty are managed by assessing the robustness of the schedules. The robustness is introduced by means of operational buffer times to absorb those unknown incidences or breakdowns. Therefore, this problem becomes a multiobjective combinatorial optimization problem that aims to minimize the total service time, to maximize the buffer times, and to minimize the standard deviation of the buffer times. To this end, a mathematical model and a new hybrid multiobjective metaheuristic is presented and compared with two well-known multiobjective genetic algorithms: NSGAII and SPEA2+.This work has been partially supported by by the Spanish Government under research project MINECO TIN2013-46511-C2-1-P, the project PIRSES-GA-2011-294931 (FP7-PEOPLE-2011-IRSES), and the predoctoral FPU fellowship (AP2010-4405).Rodríguez Molins, M.; Salido Gregorio, MA.; Barber Sanchís, F. (2014). Robust scheduling for Berth Allocation and Quay Crane Assignment Problem. Mathematical Problems in Engineering. 2014(1):1-17. https://doi.org/10.1155/2014/834927S11720141Imai, A., Chen, H. C., Nishimura, E., & Papadimitriou, S. (2008). The simultaneous berth and quay crane allocation problem. Transportation Research Part E: Logistics and Transportation Review, 44(5), 900-920. doi:10.1016/j.tre.2007.03.003Hu, Q.-M., Hu, Z.-H., & Du, Y. (2014). Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels. Computers & Industrial Engineering, 70, 1-10. doi:10.1016/j.cie.2014.01.003Salido, M. A., Rodriguez-Molins, M., & Barber, F. (2011). Integrated intelligent techniques for remarshaling and berthing in maritime terminals. Advanced Engineering Informatics, 25(3), 435-451. doi:10.1016/j.aei.2010.10.001Rodriguez-Molins, M., Salido, M. A., & Barber, F. (2013). A GRASP-based metaheuristic for the Berth Allocation Problem and the Quay Crane Assignment Problem by managing vessel cargo holds. Applied Intelligence, 40(2), 273-290. doi:10.1007/s10489-013-0462-4Stahlbock, R., & Voß, S. (2007). Operations research at container terminals: a literature update. OR Spectrum, 30(1), 1-52. doi:10.1007/s00291-007-0100-9Lim, A. (1998). The berth planning problem. Operations Research Letters, 22(2-3), 105-110. doi:10.1016/s0167-6377(98)00010-8Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615-627. doi:10.1016/j.ejor.2009.05.031Kim, K. H., & Moon, K. C. (2003). Berth scheduling by simulated annealing. Transportation Research Part B: Methodological, 37(6), 541-560. doi:10.1016/s0191-2615(02)00027-9Giallombardo, G., Moccia, L., Salani, M., & Vacca, I. (2010). Modeling and solving the Tactical Berth Allocation Problem. Transportation Research Part B: Methodological, 44(2), 232-245. doi:10.1016/j.trb.2009.07.003Liang, C., Guo, J., & Yang, Y. (2009). Multi-objective hybrid genetic algorithm for quay crane dynamic assignment in berth allocation planning. Journal of Intelligent Manufacturing, 22(3), 471-479. doi:10.1007/s10845-009-0304-8Diabat, A., & Theodorou, E. (2014). An Integrated Quay Crane Assignment and Scheduling Problem. Computers & Industrial Engineering, 73, 115-123. doi:10.1016/j.cie.2013.12.012Park, Y.-M., & Kim, K. H. (2003). A scheduling method for Berth and Quay cranes. OR Spectrum, 25(1), 1-23. doi:10.1007/s00291-002-0109-zZhang, C., Zheng, L., Zhang, Z., Shi, L., & Armstrong, A. J. (2010). The allocation of berths and quay cranes by using a sub-gradient optimization technique. Computers & Industrial Engineering, 58(1), 40-50. doi:10.1016/j.cie.2009.08.002Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2007). Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. Journal of Scheduling, 11(2), 121-136. doi:10.1007/s10951-007-0021-0Hendriks, M., Laumanns, M., Lefeber, E., & Udding, J. T. (2010). Robust cyclic berth planning of container vessels. OR Spectrum, 32(3), 501-517. doi:10.1007/s00291-010-0198-zHan, X., Lu, Z., & Xi, L. (2010). A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. European Journal of Operational Research, 207(3), 1327-1340. doi:10.1016/j.ejor.2010.07.018Xu, Y., Chen, Q., & Quan, X. (2011). Robust berth scheduling with uncertain vessel delay and handling time. Annals of Operations Research, 192(1), 123-140. doi:10.1007/s10479-010-0820-0Zhen, L., & Chang, D.-F. (2012). A bi-objective model for robust berth allocation scheduling. Computers & Industrial Engineering, 63(1), 262-273. doi:10.1016/j.cie.2012.03.003Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135-4151. doi:10.1016/j.asoc.2011.02.032Ehrgott, M., & Gandibleux, X. (2008). Hybrid Metaheuristics for Multi-objective Combinatorial Optimization. Studies in Computational Intelligence, 221-259. doi:10.1007/978-3-540-78295-7_8Hanafi, R., & Kozan, E. (2014). A hybrid constructive heuristic and simulated annealing for railway crew scheduling. Computers & Industrial Engineering, 70, 11-19. doi:10.1016/j.cie.2014.01.002Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Kim, M., Hiroyasu, T., Miki, M., & Watanabe, S. (2004). SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2. Parallel Problem Solving from Nature - PPSN VIII, 742-751. doi:10.1007/978-3-540-30217-9_75Rodriguez-Molins, M., Ingolotti, L., Barber, F., Salido, M. A., Sierra, M. R., & Puente, J. (2014). A genetic algorithm for robust berth allocation and quay crane assignment. Progress in Artificial Intelligence, 2(4), 177-192. doi:10.1007/s13748-014-0056-3Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32-49. doi:10.1016/j.swevo.2011.03.001Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 12(3), 269-283. doi:10.1109/tevc.2007.900837While, L., Bradstreet, L., & Barone, L. (2012). A Fast Way of Calculating Exact Hypervolumes. IEEE Transactions on Evolutionary Computation, 16(1), 86-95. doi:10.1109/tevc.2010.207729

    A genetic algorithm for robust berth allocation and quay crane assignment

    Get PDF
    Scheduling problems usually obtain the optimal solutions assuming that the environment is deterministic. However, actually the environment is dynamic and uncertain. Thus, the initial data could change and the initial schedule obtained might be unfeasible. To overcome this issue, a proactive approach is presented for scheduling problems without any previous knowledge about the incidences that can occur. In this paper, we consider the berth allocation problem and the quay crane assignment problem as a representative example of scheduling problems where a typical objective is to minimize the service time. The robustness is introduced within this problem by means of buffer times that should be maximized to absorb possible incidences or breakdowns. Therefore, this problem becomes a multi-objective optimization problem with two opposite objectives: minimizing the total service time and maximizing the robustness or buffer time

    Models and Techniques for Planning, Optimization and Simulation in Container Terminals

    Full text link
    Several AI techniques are applied to achieve optimal solutions to different combinatorial problems of Container Terminals. We presented a domain-dependent heuristic planner for Container Stacking Problem. A GRASP metaheuristic is employed to solve the BAP and QCAP. And finally, we present how to integrate the last two approaches into one systemRodríguez Molins, M. (2011). Models and Techniques for Planning, Optimization and Simulation in Container Terminals. http://hdl.handle.net/10251/11432Archivo delegad

    A GRASP-based metaheuristic for the Berth Allocation Problem and the Quay Crane Assignment Problem by managing vessel cargo holds

    Full text link
    Container terminals are open systems that generally serve as a transshipment zone between vessels and land vehicles. These terminals carry out a large number of planning and scheduling tasks. In this paper, we consider the problem of scheduling a number of incoming vessels by assigning a berthing position, a berthing time, and a number of Quay Cranes to each vessel. This problem is known as the Berth Allocation Problem and the Quay Crane Assignment Problem. Holds of vessels are also managed in order to obtain a more realistic approach. Our aim is to minimize the total waiting time elapsed to serve all these vessels. In this paper, we deal with the above problems and propose an innovative metaheuristic approach. The results are compared against other allocation methods.This work has been partially supported by the research projects TIN2010-20976-C02-01 (Ministerio de Ciencia e Innovacion, Spain) the fellowship program FPU (AP2010-4405), and also with the collaboration of the maritime container terminal MSC (Mediterranean Shipping Company S.A.).Rodríguez Molins, M.; Salido Gregorio, MA.; Barber Sanchís, F. (2014). A GRASP-based metaheuristic for the Berth Allocation Problem and the Quay Crane Assignment Problem by managing vessel cargo holds. Applied Intelligence. 40(2):273-290. https://doi.org/10.1007/s10489-013-0462-4S273290402Ayvaz D, Topcuoglu H, Gurgen F (2012) Performance evaluation of evolutionary heuristics in dynamic environments. Appl Intell 37(1):130–144Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202(3):615–627Cheong C, Tan K, Liu D (2009) Solving the berth allocation problem with service priority via multi-objective optimization. In: IEEE symposium on computational intelligence in scheduling, 2009, CI-sched ’09, pp 95–102Christiansen M, Fagerholt K, Ronen D (2004) Ship routing and scheduling: status and perspectives. Transp Sci 38(1):1–18Consultants DS (2010) Global container terminal operators annual review and forecast. Annual ReportCordeau J, Laporte G, Legato P, Moccia L (2005) Models and tabu search heuristics for the berth-allocation problem. Transp Sci 39(4):526–538Daganzo C (1989) The crane scheduling problem. Transp Res, Part B, Methodol 23(3):159–175Feo T, Resende M (1995) Greedy randomized adaptive search procedures. J Glob Optim 6(2):109–133Festa P, Resende MG (2009) An annotated bibliography of grasp–part ii: applications. Int Trans Oper Res 16(2):131–172Giallombardo G, Moccia L, Salani M, Vacca I (2010) Modeling and solving the tactical berth allocation problem. Transp Res, Part B, Methodol 44(2):232–245Guan Y, Cheung R (2004) The berth allocation problem: models and solution methods. OR Spektrum 26(1):75–92Henesey L (2006) Overview of transshipment operations and simulation. In: MedTrade conference, Malta, April 2006, pp 6–7Imai A, Nagaiwa K, Tat C (1997) Efficient planning of berth allocation for container terminals in Asia. J Adv Transp 31(1):75–94Imai A, Chen H, Nishimura E, Papadimitriou S (2008) The simultaneous berth and quay crane allocation problem. Transp Res, Part E, Logist Transp Rev 44(5):900–920Kim K, Günther H (2006) Container terminals and cargo systems. Springer, BerlinKim KH, Park YM (2004) A crane scheduling method for port container terminals. Eur J Oper Res 156(3):752–768Lai KK, Shih K (1992) A study of container berth allocation. J Adv Transp 26(1):45–60Lambrechts O, Demeulemeester E, Herroelen W (2008) Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. J Sched 11(2):121–136Lee D, Wang H, Miao L (2008) Quay crane scheduling with non-interference constraints in port container terminals. Transp Res, Part E, Logist Transp Rev 44(1):124–135Lee DH, Chen JH, Cao JX (2010) The continuous berth allocation problem: a greedy randomized adaptive search solution. Transp Res, Part E, Logist Transp Rev 46(6):1017–1029Liang C, Huang Y, Yang Y (2009) A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning. Comput Ind Eng 56(3):1021–1028Lim A (1998) The berth planning problem. Oper Res Lett 22(2–3):105–110Liu J, Wan YW, Wang L (2006) Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures. Nav Res Logist 53(1):60–74Meisel F, Bierwirth C (2009) Heuristics for the integration of crane productivity in the berth allocation problem. Transp Res, Part E, Logist Transp Rev 45(1):196–209Mohi-Eldin E, Mohamed E (2010) The impact of the financial crisis on container terminals (a global perspectives on market behavior). In: Proceedings of 26th international conference for seaports & maritime transportPark Y, Kim K (2003) A scheduling method for berth and quay cranes. OR Spektrum 25(1):1–23Peterkofsky R, Daganzo C (1990) A branch and bound solution method for the crane scheduling problem. Transp Res, Part B, Methodol 24(3):159–172Rodríguez-Molins M, Salido MA, Barber F (2010) Domain-dependent planning heuristics for locating containers in maritime terminals. In: Proceedings of the 23rd international conference on industrial engineering and other applications of applied intelligent systems. LNCS, vol 6096. Springer, Berlin, pp 742–751Rodriguez-Molins M, Salido M, Barber F (2012) Intelligent planning for allocating containers in maritime terminals. Expert Syst Appl 39(1):978–989Salido M, Sapena O, Barber F (2009) An artificial intelligence planning tool for the container stacking problem. In: Proceedings of the 14th IEEE international conference on emerging technologies and factory automation, pp 532–535Salido MA, Rodriguez-Molins M, Barber F (2012) A decision support system for managing combinatorial problems in container terminals. Knowl-Based Syst 29:63–74Stahlbock R, VoßS (2008) Operations research at container terminals: a literature update. OR Spektrum 30(1):1–52Steenken D, VoßS, Stahlbock R (2004) Container terminal operation and operations research-a classification and literature review. OR Spektrum 26(1):3–49Szlapczynski R, Szlapczynska J (2012) On evolutionary computing in multi-ship trajectory planning. Appl Intell 37:155–174Theofanis S, Boile M, Golias M (2009) Container terminal berth planning. Transp Res Rec 2100:22–28ValenciaPort F (2009) Automation and simulation methodologies for assessing and improving the capacity, performance and service level of port container terminals. Ministerio de Fomento (P19/08), SpainVis I, De Koster R (2003) Transshipment of containers at a container terminal: an overview. Eur J Oper Res 147:1–1
    corecore